que es la bioquímica ?
La bioquímica es una ciencia que estudia la composición química de los seres vivos, especialmente las proteínas, carbohidratos, lípidos yácidos nucleicos, además de otras pequeñas moléculas presentes en las células y las reacciones químicas que sufren estos compuestos (metabolismo) que les permiten obtener energía (catabolismo) y generar biomoléculas propias (anabolismo). La bioquímica se basa en el concepto de que todo ser vivo contiene carbono y en general las moléculas biológicas están compuestas principalmente de carbono,hidrógeno, oxígeno, nitrógeno, fósforo y azufre.
ramas de la bioquimica
Las ramas de la bioquímica son muy amplias y diversas, y han ido variando con el tiempo y los avances de la biología, la química y la física.
- Bioquímica estructural: es un área de la bioquímica que pretende comprender la arquitectura química de las macromoléculas biológicas, especialmente de las proteínas y de los ácidos nucleicos (DNA y RNA). Así se intenta conocer las secuencias peptídicas, su estructura y conformación tridimensional, y las interacciones físico-químicas atómicas que posibilitan a dichas estructuras. Uno de sus máximos retos es determinar la estructura de una proteína conociendo sólo la secuencia de aminoácidos, que supondría la base esencial para el diseño racional de proteínas (ingeniería de proteínas).
- Química bioorgánica: es un área de la química que se encarga del estudio de los compuestos orgánicos (es decir, aquellos que tienen enlaces covalentes carbono-carbono o carbono-hidrógeno) que provienen específicamente de seres vivos. Se trata de una ciencia íntimamente relacionada con la bioquímica clásica, ya que en la mayoría de los compuestos biológicos participa el carbono. Mientras que la bioquímica clásica ayuda a comprender los procesos biológicos con base en conocimientos de estructura, enlace químico, interacciones moleculares y reactividad de las moléculas orgánicas, la química bioorgánica intenta integrar los conocimientos de síntesis orgánica, mecanismos de reacción, análisis estructural y métodos analíticos con las reacciones metabólicas primarias y secundarias, la biosíntesis, el reconocimiento celular y la diversidad química de los organismos vivos. De allí surge la Química de Productos Naturales (V. Metabolismo secundario).3
- Enzimología: estudia el comportamiento de los catalizadores biológicos o enzimas, como son algunas proteínas y ciertos RNA catalíticos, así como las coenzimas y cofactores como metales y vitaminas. Así se cuestiona los mecanismos de catálisis, los procesos de interacción de las enzimas-sustrato, los estados de transición catalíticos, las actividades enzimáticas, la cinética de la reacción y los mecanismos de regulación y expresión enzimáticas, todo ello desde un punto de vista bioquímico. Estudia y trata de comprender los elementos esenciales del centro activo y de aquellos que no participan, así como los efectos catalíticos que ocurren en la modificación de dichos elementos; en este sentido, utilizan frecuentemente técnicas como la mutagénesis dirigida.
- Bioquímica metabólica: es un área de la bioquímica que pretende conocer los diferentes tipos de rutas metabólicas a nivel celular, y su contexto orgánico. De esta forma son esenciales conocimientos de enzimología y biología celular. Estudia todas las reacciones bioquímicas celulares que posibilitan la vida, y así como los índices bioquímicos orgánicos saludables, las bases moleculares de las enfermedades metabólicas o los flujos de intermediarios metabólicos a nivel global.
- Xenobioquímica: es la disciplina que estudia el comportamiento metabólico de los compuestos cuya estructura química no es propia en el metabolismo regular de un organismo determinado. Pueden ser metabolitos secundarios de otros organismos (P. ejemplo las micotoxinas, los venenos de serpientes y los fitoquímicos cuando ingresan al organismo humano) o compuestos poco frecuentes o inexistentes en la naturaleza.5 La Farmacología es una disciplina que estudia a los xenobióticos que benefician al funcionamiento celular en el organismo debido a sus efectos terapéuticos o preventivos (Fármacos). La farmacología tiene aplicaciones clínicas cuando las sustancias son utilizadas en el diagnóstico, prevención, tratamiento y alivio de síntomas de una enfermedad así como el desarrollo racional de sustancias menos invasivas y más eficaces contra dianas biomoleculares concretas. Por otro lado, la Toxicología es el estudio que identifica, estudia y describe, la dosis, la naturaleza, la incidencia, la severidad, la reversibilidad y, generalmente, los mecanismos de los efectos adversos (efectos tóxicos) que producen los xenobióticos. Actualmente la toxicología también estudia el mecanismo de los componentes endógenos, como los radicales libres de oxígeno y otros intermediarios reactivos, generados por xenobióticos y endobióticos.
- Inmunología: área de la biología, la cual se interesa por la reacción del organismo frente a otros organismos como las bacterias y virus. Todo esto tomando en cuenta la reacción y funcionamiento del sistema inmune de los seres vivos. Es esencial en esta área el desarrollo de los estudios de producción y comportamiento de los anticuerpos.
- Endocrinología: es el estudio de las secreciones internas llamadas hormonas, las cuales son sustancias producidas por células especializadas cuyo fin es de afectar la función de otras células. La endocrinología trata la biosíntesis, el almacenamiento y la función de las hormonas, las células y los tejidos que las secretan, así como los mecanismos de señalización hormonal. Existen subdisciplinas como la endocrinología médica, la endocrinología vegetal y la endocrinología animal.
- Neuroquímica: es el estudio de las moléculas orgánicas que participan en la actividad neuronal. Este término es empleado con frecuencia para referir a los neurotransmisores y otras moléculas como las drogas neuro-activas que influencian la función neuronal.
- Quimiotaxonomía: es el estudio de la clasificación e identificación de organismos de acuerdo a sus diferencias y similitudes demostrables en su composición química. Los compuestos estudiados pueden ser fosfolípidos, proteínas, péptidos, heterósidos, alcaloides y terpenos. John Griffith Vaughan fue uno de los pioneros de la quimiotaxonomía. Entre los ejemplos de las aplicaciones de la quimiotaxonomía pueden citarse la diferenciación de las familias Asclepiadaceae y Apocynaceae según el criterio de la presencia de látex; la presencia de agarofuranos en la familia Celastraceae; las sesquiterpenlactonas con esqueleto de germacrano que son características de la familia Asteraceae o la presencia de abietanos en las partes aéreas de plantas del género Salvia del viejo Mundo a diferencia de las del Nuevo Mundo que presentan principalmente neo-clerodanos.6
- Ecología química: es el estudio de los compuestos químicos de origen biológico implicados en las interacciones de organismos vivos. Se centra en la producción y respuesta de moléculas señalizadoras (semioquímicos), así como los compuestos que influyen en el crecimiento, supervivencia y reproducción de otros organismos (aleloquímicos).
- Virología: área de la biología, que se dedica al estudio de los biosistemas más elementales: los virus. Tanto en su clasificación y reconocimiento, como en su funcionamiento y estructura molecular. Pretende reconocer dianas para la actuación de posibles de fármacos y vacunas que eviten su directa o preventivamente su expansión. También se analizan y predicen, en términos evolutivos, la variación y la combinación de los genomas víricos, que podrían hacerlos eventualmente, más peligrosos. Finalmente suponen una herramienta con mucha proyección como vectores recombinantes, y han sido ya utilizados en terapia génica.
- Genética molecular e ingeniería genética: es un área de la bioquímica y la biología molecular que estudia los genes, su herencia y su expresión. Molecularmente, se dedica al estudio del DNA y del RNA principalmente, y utiliza herramientas y técnicas potentes en su estudio, tales como la PCR y sus variantes, los secuenciadores masivos, los kits comerciales de extracción de DNA y RNA, procesos de transcripción-traducción in vitro e in vivo, enzimas de restricción, DNA ligasas… Es esencial conocer como el DNA se replica, se transcribe y se traduce a proteínas (Dogma Central de la Biología Molecular), así como los mecanismos de expresión basal e inducible de genes en el genoma. También estudia la inserción de genes, el silenciamiento génico y la expresión diferencial de genes y sus efectos. Superando así las barreras y fronteras entre especies en el sentido que el genoma de una especie podemos insertarlo en otro y generar nuevas especies. Uno de sus máximos objetivos actuales es conocer los mecanismos de regulación y expresión genética, es decir, obtener un código epigenético. Constituye un pilar esencial en todas las disciplinas biocientíficas, especialmente en biotecnología.
- Biología Molecular: es la disciplina científica que tiene como objetivo el estudio de los procesos que se desarrollan en los seres vivos desde un punto de vista molecular. Así como la bioquímica clásica investiga detalladamente los ciclos metabólicos y la integración y desintegración de las moléculas que componen los seres vivos, la Biología molecular pretende fijarse con preferencia en el comportamiento biológico de las macromoléculas (ADN, ARN, enzimas, hormonas, etc.) dentro de la célula y explicar las funciones biológicas del ser vivo por estas propiedades a nivel molecular.
- Biología celular: (antiguamente citología, de citos=célula y logos=Estudio o Tratado ) es una área de la biología que se dedica al estudio de la morfología y fisiología de las células procariotas y eucariotas. Trata de conocer sus propiedades, estructura, composición bioquímica, funciones, orgánulos que contienen, su interacción con el ambiente y su ciclo vital. Es esencial en esta área conocer los procesos intrínsecos a la vida celular durante el ciclo celular, como la nutrición, la respiración, la síntesis de componentes, los mecanismos de defensa, la división celular y la muerte celular. También se deben conocer los mecanismos de comunicación de células (especialmente en organismos pluricelulares) o las uniones intercelulares. Es un área esencialmente de observación y experimentación en cultivos celulares, que, frecuentemente, tienen como objetivo la identificación y separación de poblaciones celulares y el reconocimiento de orgánulos celulares. Algunas técnicas utilizadas en biología celular tienen que ver con el empleo de técnicas de citoquímica, siembra de cultivos celulares, observación por microscopía óptica y electrónica, inmunocitoquímica, inmunohistoquímica, ELISA o citometría de flujo. Está íntimamente ligada a disciplinas como histología, microbiología o fisiología.
importancia y aplicaciones de la bioquímica
es la ciencia que estudia la mismísima base de la vida:las moléculas que componen las células y los tejidos,que catalizan las reacciones químicas de la digestión,la fotosíntesis,la inmunidad entre otras
la bioquimica es una siencia bastante utilizada en estos dias ,Hasta ahora la bioquímica ha sido utilizada principalmente en tratamientos preventivos para enfermedades como el Cáncer, Alzheimer, Parkinson o la Esquizofrenia entre otros; es decir, para terapias químicas en general. Pero la tendencia va hacia aprovechar la ventaja de esta ciencia, que consiste en permitir comparar lo que falta y tomar lo que ya existe en el organismo, es decir, mantener la homeóstasis del cuerpo.
que son los carbohidratos?
¿Qué son los carbohidratos? Los carbohidratos, también llamados glúcidos, carbohidratos, hidratos de carbono o sacáridos, son elementos principales en la alimentación, que se encuentran principalmente en azúcares, almidones y fibra. La función principal de los carbohidratos es el aporte energético. Son una de las sustancias principales que necesita nuestro organismo, junto a las grasas y las proteínas.
Carbohidratos en los alimentos
Los carbohidratos se encuentran en una amplia variedad de alimentos entre los que se encuentras el pan, alubias, leche, palomitas de maíz, patatas, galletas, fideos, gaseosas, maíz o pastel de cereza. También vienen en una variedad de formas. Las formas más comunes y abundantes son los azúcares, fibras y almidones.
El componente básico de todos los hidratos de carbono es una molécula de azúcar, una simple unión de carbono, hidrógeno y oxígeno. Almidones y fibras son esencialmente cadenas de moléculas de azúcar. Algunos contienen cientos de azúcares. Algunas cadenas son lineales, otras complejas.
Tipos de carbohidratos
Los carbohidratos o hidratos de carbono se agrupan en dos categorías principales. Los carbohidratos simples incluyen azúcares, tales como el azúcar de la fruta (fructosa), el azúcar del maíz o el azúcar de uva (dextrosa o glucosa), y el azúcar de mesa (sacarosa). Los carbohidratos complejos(carbohidratos complejos) incluyen todo lo hecho de tres o más azúcares unidos. Los carbohidratos complejos se pensaba que eran más saludables para comer, mientras que los carbohidratos simples no eran tan buenos. Resulta que el panorama es más complicado que eso.
El sistema digestivo maneja todos los carbohidratos de la misma forma: los rompe (o trata de romperlos) en moléculas de azúcar simples, ya que sólo éstos son lo suficientemente pequeños para pasar al torrente sanguíneo. También convierte la mayoría de los carbohidratos digestibles en glucosa (también conocida como azúcar en la sangre), porque las células están diseñadas para utilizar esto como una fuente de energía universal.
La fibra es una excepción. No puede dividirse en moléculas de azúcar, por lo que pasa a través del cuerpo sin ser digerida. La fibra viene en dos variedades: la fibra soluble se disuelve en agua, mientras que la fibra insoluble no lo hace. Aunque ninguno de los tipos nutre el cuerpo, es buena para la salud de muchas maneras. La fibra soluble se une a las grasas en el intestino y las arrastra, lo que disminuye la lipoproteína de baja densidad (LDL, o colesterol malo). También ayuda a regular el uso de azúcares del cuerpo, ayudando a mantener a raya el hambre y el azúcar en sangre. La fibra insoluble ayuda a empujar la comida a través del tracto intestinal, la promoción de la regularidad y ayudar a prevenir el estreñimiento.
Funciones de los carbohidratos
Los glúcidos cumplen un papel muy importante en nuestro organismo, que incluyen las funciones relacionadas con el tema energético, el ahorro de las proteínas, la regulación del metabolismo de las grasas y el tema estructural.
- Energía – Los carbohidratos aportan 4 kilocalorías (KCal) por gramo de peso neto, sin agua. Una vez repuestas y cubiertas todas las necesidades de energía del cuerpo, una pequeña parte se almacena en el hígado y los músculos en forma de glucógeno (normalmente no más de 0,5% del peso de la persona), el resto se transforma en tejido adiposo y se almacena en el organismo como grasas.
Se suele recomendar que minimamente se efectúe una ingesta diaria de 100 gramos de hidratos de carbono para mantener los procesos metabólicos. - Ahorro de proteínas – Cuando el cuerpo no dispone de suficientes hidratos de carbono, éste utilizará las proteínas con fines energéticos, consumiéndolas e impidiéndolas, por tanto, realizar otras funciones de construcción.
- Regulación del metabolismo de las grasas – En caso de no cumplir con una ingestión suficiente de carbohidratos, las grasas se metabolizan como cuerpos cetónicos, que son productos intermedios que pueden provocar problemas: cetosis – La cetosis es una situación metabólica del organismo originada por un déficit en el aporte de carbohidratos, lo que induce el catabolismo de las grasas a fin de obtener energía, generando unos compuestos denominados cuerpos cetónicos..
- Estructura – los carbohidratos constituyen una porción pequeña del peso y estructura del organismo, pero igualmente importante.
que son los lipidos ?
Se llama lípidos a un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno. Tienen como característica principal ser insolubles en agua y sí en disolventes orgánicos como el benceno. A los lípidos se les llama incorrectamente grasas, cuando las grasas son sólo un tipo de lípidos, aunque el más conocido.
Los lípidos forman un grupo de sustancias de estructura química muy heterogénea, siendo la clasificación más aceptada la siguiente:
- Lípidos saponificables: Los lípidos saponificables son los lípidos que contienen ácidos grasos en su molécula y producen reacciones químicas de saponificación. A su vez los lípidos saponificables se dividen en:
- Lípidos simples: Son aquellos lípidos que sólo contienen carbono, hidrógeno y oxígeno. Estos lípidos simples se subdividen a su vez en: Acilglicéridos o grasas (cuando los acilglicéridos son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites) y Céridos o ceras.
- Lípidos complejos: Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares: Fosfolípidos y Glicolípidos.
- Lípidos insaponificables: Son los lípidos que no poseen ácidos grasos en su estructura y no producen reacciones de saponificación. Entre los lípidos insaponificables encontramos a: Terpenos, Esteroides y Prostaglandinas.
¿Qué función desempeñan los lípidos en el organismo?
Principalmente las tres siguientes:
- Función de reserva energética: Los lípidos son la principal fuente de energía de los animales ya que un gramo de grasa produce 9,4 kilocalorías en las reacciones metabólicas de oxidación, mientras que las proteínas y los glúcidos sólo producen 4,1 kilocalorías por gramo.
- Función estructural: Los lípidos forman las bicapas lipídicas de las membranas celulares. Además recubren y proporcionan consistencia a los órganos y protegen mecánicamente estructuras o son aislantes térmicos como el tejido adiposo.
- Función catalizadora, hormonal o de mensajeros químicos: Los lípidos facilitan determinadas reacciones químicas y los esteroides cumplen funciones hormonales.
Los lípidos forman un grupo de sustancias de estructura química muy heterogénea, siendo la clasificación más aceptada la siguiente:
- Lípidos simples: Son aquellos lípidos que sólo contienen carbono, hidrógeno y oxígeno. Estos lípidos simples se subdividen a su vez en: Acilglicéridos o grasas (cuando los acilglicéridos son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites) y Céridos o ceras.
- Lípidos complejos: Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares: Fosfolípidos y Glicolípidos.
Principalmente las tres siguientes:
que son las proteínas?
Las proteínas son macromoléculas compuestas por carbono, hidrógeno, oxígeno y nitrógeno. La mayoría también contienen azufre y fósforo. Las mismas están formadas por la unión de varios aminoácidos, unidos mediante enlaces peptídicos. El orden y disposición de los aminoácidos en una proteína depende del código genético, ADN, de la persona.
Las proteínas constituyen alrededor del 50% del peso seco de los tejidos y no existe proceso biológico alguno que no dependa de la participación de este tipo de sustancias.
Las funciones principales de las proteínas en el organismo son:
Las proteínas son clasificables según su estructura química en:
Las proteínas constituyen alrededor del 50% del peso seco de los tejidos y no existe proceso biológico alguno que no dependa de la participación de este tipo de sustancias.
Funciones de las proteínas
Las funciones principales de las proteínas en el organismo son:
- Ser esenciales para el crecimiento. Las grasas y carbohidratos no las pueden sustituir, por no contener nitrógeno.
- Proporcionan los aminoácidos esenciales fundamentales para la síntesis tisular.
- Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas.
- Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.Energéticamente, las proteínas aportan al organismo 4 Kcal de energía por cada gramo que se ingiere.
- Actúan como catalizadores biológicos acelerando la velocidad de las reacciones químicas del metabolismo. Son las enzimas.
Actúan como transporte de gases como oxígeno y dióxido de carbono en sangre. (hemoglobina). - Actúan como defensa, los anticuerpos son proteínas de defensa natural contra infecciones o agentes extraños.
Permiten el movimiento celular a través de la miosina y actina (proteínas contráctiles musculares). - Resistencia. El colágeno es la principal proteína integrante de los tejidos de sostén.
Clasificación de las proteínas
Las proteínas son clasificables según su estructura química en:
Proteínas simples:
Producen solo aminoácidos al ser hidrolizados.Albúminas y globulinas:
Son solubles en agua y soluciones salinas diluidas (ej.: lactoalbumina de la leche).Glutelinas y prolaninas:
Son solubles en ácidos y álcalis, se encuentran en cereales fundamentalmente el trigo. El gluten se forma a partir de una mezcla de gluteninas y gliadinas con agua.Albuminoides:
Son insolubles en agua, son fibrosas, incluyen la queratina del cabello, el colágeno del tejido conectivo y la fibrina del coagulo sanguíneo.Proteínas conjugadas:
Son las que contienen partes no proteicas. Ej.: nucleoproteínas.Proteínas derivadas:
Son producto de la hidrólisis.
vídeo sobre la bioquímica
a continuación te dejare un muy buen video acerca de la bioquimica
carbohidratos
proteinas
lipidos
video
este es un video sobre lipidos carbohidratos y proteinas
que es colesterol?
El colesterol se considera comúnmente una especie de grasa peligrosa para la salud, indeseable en el cuerpo humano. En realidad, es todo lo contrario. Es un lípido esteroide (no exactamente una grasa) esencial para el cuerpo. Forma la base de la producción de vitamina D(incluso quienes toman suplementos obtienen alrededor del 90 por ciento de su vitamina D de la piel), de hormonas esteroides, mielina y sebo.
El colesterol no es algo malo para el cuerpo; de hecho, es esencial para la vida.
Existen varios tipos de colesterol, uno que se conoce como colesterol “bueno” y otro que se conoce como colesterol “malo”. Otras formas de colesterol son los triglicéridos y el Lp(a)
La diferencia entre el colesterol malo y el bueno es su densidad. El colesterol de baja densidad es en realidad una lipoproteína, es decir, una asociación de colesterol con proteínas, donde hay pocas proteínas y por tanto se considera “malo”. Éste aumenta el riesgo de enfermedades coronarias. Las lipoproteínas con más proteína son más densas y se consideran el colesterol “bueno”. El colesterol de alta densidad desplaza al de baja densidad, y de hecho nos protege contra males cardiovasculares.
Contrario al saber popular, el colesterol no es “bueno” ni “malo”. Lo que puede ser bueno o malo son las lipoproteínas que forman. Existe colesterol de alta densidad que es mejor que otro, según las proteínas con que se combine.
El Lp(a) es una forma de colesterol de baja densidad unido a una proteína llamada apoproteína (a).
Los triglicéridos son en verdad nocivos y están asociados a la diabetes y a enfermedades cardíacas. Factores que aumentan esta sustancia en el organismo son el consumo de carbohidratos simples, el sedentarismo, consumo de alcohol,sobrepeso y fumar